

DashboardLayout for WinForms
2018.11.22 更新

グレープシティ株式会社グレープシティ株式会社

目次

DashboardLayout for WinForms 2

主な特長 3

要素 4-5

クイックスタート 6-7

DashboardLayoutの操作 8

レイアウト 8

フロー レイアウト 8-9

グリッド レイアウト 9-11

分割レイアウト 11-12

子コンテナのヘッダー 12-13

子コンテナのコンテキストメニュー 13-14

ドラッグアンドドロップ 14-15

ツールアイコン 15-16

サイズ変更 16-19

ダッシュボードのスタイル 19-21

XMLシリアル化 21-22

チュートリアル 23

フローレイアウトでダッシュボードの作成 23-26

グリッドレイアウトでダッシュボードの作成 26-29

分割レイアウトでダッシュボードの作成 29-32

カスタムコンテキストメニューの作成 32-36

 DashBoardLayout for WinForms

1 Copyright © GrapeCity, Inc. All rights reserved.

DashboardLayout for WinForms
DashboardLayout for WinForms is a layout control that allows you to create dynamic dashboards for interactive
data visualization. It allows you to organize and present data in a consolidated form with the help of images, grids,
charts, maps, etc in different layouts. This makes it easy for you to monitor the presented information.

The DashboardLayout control acts as a container which lets you dynamically place controls within tiles also called
child containers. These child containers can be arranged in different layouts in the layout control contained within the
dashboard control. The control lets you resize and rearrange these child containers at runtime to create an ideal
workspace.

DashBoardLayout for WinForms

2 Copyright © GrapeCity, Inc. All rights reserved.

主な特長主な特長

DashboardLayout provides many different features that enable the developers to build intuitive and professional-
looking dashboards. The main features for DashboardLayout are as follows:

Use different layouts

DashboardLayout provides three types of layouts, namely Flow, Grid and Split. These layouts specify the
arrangement of the child containers in different ways on the DashboardLayout control.

Customize child container headers

DashboardLayout allows customization in child container’s header by either providing caption or adding
custom objects such as buttons and icons, to it.

Drag and drop child containers

DashboardLayout lets you drag a child container at runtime. When you hover the mouse over an empty space
of the child container, a hand tool appears on its surface to drag it. DashboardLayout also displays a visual cue
for possible layout which helps users to appropriately place the selected child container at the desired location.

Resize child containers

DashboardLayout supports resizing of child containers with the help of mouse at both, design-time and
runtime. The child containers can also be maximized or restored at runtime for better viewing of the contents.

Perform multiple functions with ToolIcon

DashboardLayout provides a multi functional tool called Tool-icon, which appears as an icon in the header or
on the surface of the child container on hovering the mouse over it. It can be used to drag and drop the child
containers. Moreover, tool-icon provides a context menu with options to maximize or hide a child container.

Serialization/Deserialization

DashboardLayout offers XML serialization by providing the functionality to save the layout properties of the
control to an XML file or stream and load them from another XML file or stream.

 DashBoardLayout for WinForms

3 Copyright © GrapeCity, Inc. All rights reserved.

要素要素

The DashboardLayout control consists of the following elements as shown in the image.

DashboardLayout

DashboardLayout is represented by C1DashboardLayout class. It serves as the main container with an attached
layout that defines how the child containers are arranged.

Layout

The DashboardLayout element uses layout controls to create a layout for arranging child containers containing
controls on the surface of the DashboardLayout control. It supports flow, grid and split layout types and each of them
behave differently on resizing or arranging the child containers. Dashboard allows you to specify the type of layout
using LayoutType property of the C1DashboardLayout class. The control communicates with the layout controls via
the ILayout interface. This interface can also be implemented for creating custom layouts.

Child containers

When a control is dragged on the DashboardLayout control, a child container is automatically created to hold that
control. These child containers can contain arbitrary content like text, images or any UI controls like charts, grids, maps
etc. Depending on the layout you specify using the LayoutType property, the child container is either Panel class
or C1SplitterPanel class. Thus, if the LayoutType property is set to LayoutType.Grid or LayoutType.Flow. the child
container is represented by the Panel class and if it is set to LayoutType.Split, the child container is represented by
the C1SplitterPanel class.

The child containers can be accessed using Items property of the C1Dashboardlayout class as depicted below:

((C1SplitterPanel)
(c1DashboardLayout1.Items["Container1"].ItemContainer)).Dock =
PanelDockStyle.Left
((C1SplitterPanel)

Visual Basic

DashBoardLayout for WinForms

4 Copyright © GrapeCity, Inc. All rights reserved.

(c1DashboardLayout1.Items["Container1"].ItemContainer)).Text = ”Splitter
Panel”
((C1SplitterPanel)
(c1DashboardLayout1.Items["Container1"].ItemContainer)).Collapsible =
true
((C1SplitterPanel)
(c1DashboardLayout1.Items["Container1"].ItemContainer)).HeaderBackColor
= Color.Green

((C1SplitterPanel)
(c1DashboardLayout1.Items["Container1"].ItemContainer)).Dock =
PanelDockStyle.Left;
((C1SplitterPanel)
(c1DashboardLayout1.Items["Container1"].ItemContainer)).Text = ”Splitter
Panel”;
((C1SplitterPanel)
(c1DashboardLayout1.Items["Container1"].ItemContainer)).Collapsible =
true;
((C1SplitterPanel)
(c1DashboardLayout1.Items["Container1"].ItemContainer)).HeaderBackColor
= Color.Green;

C#

 DashBoardLayout for WinForms

5 Copyright © GrapeCity, Inc. All rights reserved.

クイックスタートクイックスタート

This quick start will guide you through the steps of adding C1DashboardLayout control to create a simple dashboard application. Follow the
steps below to get started:

1. Setting up the application
2. Create a datasource for DashboardLayout
3. Add controls to DashboardLayout

The following image shows a dashboard created using the C1DashboardLayout control.

Step 1: Setting up the application

1. Create a new WinForms application.
2. Add the C1DashboardLayout control to the form.
3. In the Properties window, navigate to LayoutType property and set it to Flow.

Observe: The C1DashboardLayout control is docked in the form and a layout of the type Flow is attached to it.
4. Set the height of the form to 1000 and width to 1100.

Back to Top

Step 2: Create a datasource for DashboardLayout

1. Go to the Project menu and select Add New Data Source from the Project dropdown menu.
The Data Source Configuration Wizard dialog box appears.

2. Select Database and click Next.
3. Select Dataset and click Next.
4. Click New Connection.
5. Select Data source as Microsoft Access Database File (OLEDB).
6. Click Browse to add a database file name as C1NWind.mdb by navigating to its default location,

DashBoardLayout for WinForms

6 Copyright © GrapeCity, Inc. All rights reserved.

C:\Users\Documents\ComponentOne Samples\Common.
7. Select C1NWind database, click Open, and then click OK.
8. Click the Next button to continue. A dialog box appears asking if you would like to add the data file to your project and modify the

connection string. Since it is not necessary to copy the database to your project, click No.
9. Verify that Yes, save the connection as check box is checked and click Next to continue. The connection string is saved as

C1NwindConnectionString.
10. Expand the Views node and select Category Sales for 2014, Sales by Category and Ten Most Expensive Products objects.
11. Click Finish.

Observe: C1NwindDataSet.xsd is added to your project.

Back to Top

Step 3: Add controls to DashboardLayout

1. Drag and drop the C1FlexGrid control on the DashboardLayout.
Observe: A child container (Panel) automatically gets created under FlexGrid. It positions itself at the upper left corner of the flow
layout since its FlowDirection property is set to LeftToRight by default.

2. Navigate to the DataSource property of the FlexGrid control and select C1NwindDataSet to bind the control to the data source.
Observe: A binding source gets created and the DataSource property is set to c1NwindDataSetBindingSource.

3. Set the DataMember property to Sales by Category.
4. Now, drag and drop a FlexPie on the DashboardLayout.

Observe: Since the width of the C1DashboardLayout has not yet exhausted, the child container containing the FlexPie positions itself
next to the FlexGrid maintaining the default LeftToRight flow direction.

5. Navigate to the DataSource property of FlexPie and select the already created c1NwindDataSetBindingSource.
6. Set the DataMember property to Category Sales for 2014, Binding property to CategorySales and BindingName property to

CategoryName.
7. Drag and drop the FlexChart control on the DashboardLayout.

Observe: The child container containing the FlexChart control is wrapped to the next row as the width of the DashboardLayout has
exhausted and the WrapContents property of the flow layout is set to true. Otherwise, the child container gets clipped.

8. Navigate to the DataSource property of FlexChart and select c1NwindDataSetBindingSource. Set the DataMember property to Ten
Most Expensive Products, Binding property to UnitPrice and BindingX property to TenMostExpensiveProducts.

9. Add the following code in Form1_Load event to populate the controls with data:

Private Sub Form1_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim salesByCategoryAdapter As
C1NWindDataSetTableAdapters.Sales_by_CategoryTableAdapter = New
C1NWindDataSetTableAdapters.Sales_by_CategoryTableAdapter()
 salesByCategoryAdapter.Fill(c1NWindDataSet.Sales_by_Category)
 Dim categorySalesAdapter As
C1NWindDataSetTableAdapters.Category_Sales_for_2014TableAdapter = New
C1NWindDataSetTableAdapters.Category_Sales_for_2014TableAdapter()
 categorySalesAdapter.Fill(c1NWindDataSet.Category_Sales_for_2014)
 Dim expensiveProductsAdapter As
C1NWindDataSetTableAdapters.Ten_Most_Expensive_ProductsTableAdapter = New
C1NWindDataSetTableAdapters.Ten_Most_Expensive_ProductsTableAdapter()
 expensiveProductsAdapter.Fill(c1NWindDataSet.Ten_Most_Expensive_Products)
End Sub

C#
private void Form1_Load(object sender, EventArgs e)
{
 C1NWindDataSetTableAdapters.Sales_by_CategoryTableAdapter salesByCategoryAdapter =
 new C1NWindDataSetTableAdapters.Sales_by_CategoryTableAdapter();
 salesByCategoryAdapter.Fill(c1NWindDataSet.Sales_by_Category);

 C1NWindDataSetTableAdapters.Category_Sales_for_2014TableAdapter categorySalesAdapter =
 new C1NWindDataSetTableAdapters.Category_Sales_for_2014TableAdapter();
 categorySalesAdapter.Fill(c1NWindDataSet.Category_Sales_for_2014);

 C1NWindDataSetTableAdapters.Ten_Most_Expensive_ProductsTableAdapter expensiveProductsAdapter =
 new C1NWindDataSetTableAdapters.Ten_Most_Expensive_ProductsTableAdapter();
 expensiveProductsAdapter.Fill(c1NWindDataSet.Ten_Most_Expensive_Products);
}

10. Run the application. A simple dashboard with three child containers is displayed.

Back to Top

Visual Basic

 DashBoardLayout for WinForms

7 Copyright © GrapeCity, Inc. All rights reserved.

DashboardLayoutの操作の操作

This section comprises all the features and auxiliary functionality offered by the DashboardLayout control.

Layouts
Learn about different layouts supported by DashboardLayout.

Child Container Header
Learn about the child container header.

Child Container Context Menu
Learn how to display the child container context menu and customize it.

Drag and Drop
Learn how drag and drop works in DashboardLayout.

Tool-icon
Learn about the tool-icon and how to set its location.

Resizing
Learn about the resizing behavior of child containers in different layouts.

Dashboard Styling
Learn how to style the container, child container, and tool-icon.

XML Serialization
Learn how DashboardLayout supports serialization.

レイアウトレイアウト

DashboardLayout supports the following three types of layouts which determine the way child containers are
arranged:

Flow layout
Grid layout
Split layout

DashboardLayout allows you to set these layout types using its LayoutType property. This property accepts the values
from LayoutType enumeration which specifies following options. When you select the layout type, it gets attached to
the DashboardLayout control.

Flow
Grid
Split
Custom

フローフロー レイアウトレイアウト

DashboardLayout allows you to set the layout type to flow layout using its LayoutType property of C1DashboardLayout class. This layout arranges its contents
in horizontal or vertical flow direction. The flow direction of the contents can be specified by using the FlowDirection property which accepts the values from
FlowDirection enumeration. The possible values for this enumeration are as follows:

LeftToRight
TopDown
RightToLeft
BottomUp

By default, the FlowDirection property is set to LeftToRight. Therefore, when a control is dragged on the flow layout, the newly created child container
positions itself on the upper left corner. When you add more controls to the layout, child containers get created and placed in left to right direction. As soon as
the width of DashboardLayout has exhausted, the child containers automatically get wrapped and shift to the next row. In case you do not want the child
containers to wrap, you can set the value of the WrapContent property to False.

In flow layout, the control allows you to stop laying the controls in a particular row and start from the new row using SetFlowBreak property.

Note that the flow layout reverses its flow direction in Right-to-Left (RTL) layouts i.e. when RightToLeft property is set to True.

The following image shows controls arranged in flow layout with FlowDirection property set to BottomUp.

DashBoardLayout for WinForms

8 Copyright © GrapeCity, Inc. All rights reserved.

The flow layout can be accessed with the help of the FlowLayoutControl property which returns an instance of FlowLayoutPanel class. This instance is used to
set the properties of flow layout. The following code illustrates some of the properties of the flow layout:

c1DashboardLayout1.LayoutType = LayoutType.Flow;
c1DashboardLayout1.FlowLayoutControl.FlowDirection = FlowDirection.BottomUp;
c1DashboardLayout1.FlowLayoutControl.WrapContents = true;
c1DashboardLayout1.FlowLayoutControl.SetFlowBreak((Control)c1DashboardLayout1.Items[0].ItemContainer,
true);

C#

グリッドグリッド レイアウトレイアウト

DashboardLayout allows you to set the layout type to grid layout using its LayoutType property
of C1DashboardLayout class. When you set the layout type to Grid, the grid layout gets attached to the
DashboardLayout control. The grid layout divides the C1DashboardLayout container into rows and columns. By
default, there are three columns and two rows in the grid layout. However, you can increase the column and row
count using the ColumnCount and RowCount properties of the TableLayoutPanel class.

In grid layout, any control you drag on the DashboardLayout control is placed in one of the cells. As soon as you drag
a control, a child container of type Panel gets created to hold the control. By default, this child container is not
docked in the cell, but you can dock the child container to occupy the complete space of the cell. When all the cells in
the grid are occupied and a new control is dragged then the layout expands. It either adds a new row/column
depending on the GrowStyle property to accommodate the control. The GrowStyle property accepts one of the
following values from the TableLayoutPanelGrowStyle enumeration:

AddRows : Adds new row to accommodate the control
AddColumns: Adds new column to accommodate the control
FixedSize: Does not allow adding a new row or column. Therefore, the row count and column count is not
altered and the new control does not get added. An attempt to add another control throws an exception.

By default, grid layout expands to add new rows. Moreover, this layout also supports cell merging, wherein a child
container can span multiple rows and columns. The cell merging is enabled by setting the RowSpan and
ColumnSpan properties of the child container available in the designer.

The grid layout can be accessed by using the GridLayoutControl property of the C1DashboradLayout class. This

 DashBoardLayout for WinForms

9 Copyright © GrapeCity, Inc. All rights reserved.

property returns an instance of the TableLayoutPanel class. This instance is further used to set the properties of grid
layout as illustrated in the following code:

_gridLayout.LayoutType = LayoutType.Grid;
_gridLayout.Items.Add("Child Container1", new List<Control>()
 { new Label() { Size=new System.Drawing.Size(300,200),Text =
"Global Logistics",
 Font = new
System.Drawing.Font("Arial",18,System.Drawing.FontStyle.Bold) } });
_gridLayout.Items.Add("Child Container2", new List<Control>()
 { new FlexPie() { DataSource = _dataSet, DataMember="Table2",
 Binding = "CategorySales", BindingName = "CategoryName", Dock =
DockStyle.Fill } });
_gridLayout.SetCaption(_gridLayout.Items[1].ItemContainer, "Category
Sales");
_gridLayout.Items.Add("Child Container3", new List<Control>()
 { new C1FlexGrid() { DataSource = _dataSet,DataMember="Table1",
Dock = DockStyle.Fill } });
_gridLayout.SetCaption(_gridLayout.Items[2].ItemContainer, "Sales by
category");

//setting the properties of grid layout
_gridLayout.GridLayoutControl.GrowStyle =
TableLayoutPanelGrowStyle.AddRows;

//accessing the child containers with the help of Items property of
C1DashboardLayout
((Panel)(_gridLayout.Items["Child Container1"].ItemContainer)).Size =
new System.Drawing.Size(500, 400);
((Panel)(_gridLayout.Items["Child Container2"].ItemContainer)).Size =
new System.Drawing.Size(500, 400);
((Panel)(_gridLayout.Items["Child Container3"].ItemContainer)).Size =
new System.Drawing.Size(500, 400);

Grid Layout Smart Tag

In grid layout, the control provides you with a smart tag using which you can easily perform the following actions:

Add Column: Allows you to add column in the grid layout
Add Row: Allows you to add rows in the grid layout
Remove Last Column: Removes the last column
Remove Last Row: Removes the last row
Edit Rows and Columns: Opens "Column and Row Styles" window that lets you set the size of individual rows
and columns. It allows you to set the size of a row or column in one of the following ways:

Absolute: In an absolute number of pixels
Percentage: As a percentage of the parent container
AutoSize: Sizes the row or column to fit its contents (rows or columns)

Row and Column Sizing

Dashboard also allows you to set the row and column sizes in code using RowStyles and ColumnStyles properties of
the TableLayoutPanel class. When the grid layout arranges its rows/columns, it assigns priorities to RowStyles or

C#

DashBoardLayout for WinForms

10 Copyright © GrapeCity, Inc. All rights reserved.

ColumnStyles for each row or column in the following order:

First priority is given to the rows or columns with RowStyles or ColumnStyles set to Absolute, and their fixed
heights or widths are allocated.
Then, rows or columns with RowStyles or ColumnStyles set to AutoSize are sized to their contents.
Remaining space is divided among rows or columns with RowStyles or ColumnStyles set to Percent.

The rows and columns can be resized using the resize handle in the form designer.

Kindly refer to the TableLayoutPanel class for exploring other properties of grid layout.

分割レイアウト分割レイアウト

DashboardLayout allows you to set the layout type to split layout which allows you to add multiple panels to
the layout. When the DashboardLayout control is added to the form, by default its LayoutType is set to Split.

The split layout can be accessed by using the SplitLayoutControl property of C1DashboradLayout class. This property
returns an instance of C1SplitContainer class which is further used to set the properties of split layout as shown in
the following code:

c1DashboardLayout1.SplitLayoutControl.SplitterColor = Color.Black;
c1DashboardLayout1.SplitLayoutControl.SplitterWidth = 10;
c1DashboardLayout1.SplitLayoutControl.LineBelowHeader = false;

Split Layout Smart Tag

Clicking on the split layout’s smart tag opens up its task menu with which you can add panels to the split layout. On
adding the first panel to the split layout, it fills the entire layout’s space and adding the second panel splits the panel
horizontally and adds a horizontal splitter bar that separates the two panels. However, you can change this behavior
and split the panel vertically. To create a vertical split, set the first panel’s Dock property to Left.

The created panels are of the type C1SplitterPanel. You can edit the panels with the help of split layout’s Panels
property or with the help of Edit Panels option in the split layout’s smart tag. The split layout contains the following
four elements:

C1SplitterPanel: The panel inside the split layout
Splitter Bar: The divider that separates the two panels
Panel Header: The header that appears as a rectangular title bar above each panel
Expander button: Appears when the Collapsible property of the C1SplitterPanel is true

Positioning Panels

The position of C1SplitterPanel can easily be controlled by the Dock property. The C1SplitterPanel can be docked to
the top, left, right or bottom on the container to which the C1SplitterPanel has been assigned. The last panel in the
panel collection behaves a little different as the applied properties on the panel are ignored and its Dock property is
set to Fill.

You can change the specific properties of a child container i.e. C1SplitterPanel as shown in the following code:

_splitLayout.SplitLayoutControl.Panels[0].Collapsible = true;
_splitLayout.SplitLayoutControl.Panels[0].Dock =
C1.Win.C1SplitContainer.PanelDockStyle.Left;
_splitLayout.SplitLayoutControl.Panels[0].HeaderBackColor =

C#

C#

 DashBoardLayout for WinForms

11 Copyright © GrapeCity, Inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/system.windows.forms.tablelayoutpanel(v=vs.110).aspx

System.Drawing.Color.Yellow;
_splitLayout.SplitLayoutControl.Panels[0].HeaderForeColor =
System.Drawing.Color.Green;
_splitLayout.SplitLayoutControl.Panels[0].HeaderTextAlign =
C1.Win.C1SplitContainer.PanelTextAlign.Center;
_splitLayout.SplitLayoutControl.Panels[0].Resizable = false;
_splitLayout.SplitLayoutControl.Panels[0].ResizeWhileDragging = true;
_splitLayout.SplitLayoutControl.Panels[0].SizeRatio = 50;
_splitLayout.SplitLayoutControl.Panels[0].Text = "Sales By Category";

子コンテナのヘッダー子コンテナのヘッダー

DashboardLayout allows you to display the child container header by using SetCaption method of
the C1DashboardLayout class. This method sets caption for the header so as to make the header visible. The header
consists of caption text, a maximize icon and tool-icon with three dots positioned vertically, which can be used to hide
or drag the child container.

The following image shows a header in the child container.

For setting header on a child container, use the following code:

C#

DashBoardLayout for WinForms

12 Copyright © GrapeCity, Inc. All rights reserved.

c1DashboardLayout1.SetCaption(c1DashboardLayout1.Items[0].ItemContainer,
"FlexGrid Container Header");

You can also add custom elements to the child container headers using Options.HeaderElements at design time.

For styling child container headers, refer Dashboard Styling topic.

C#

子コンテナのコンテキストメニュー子コンテナのコンテキストメニュー

Child containers have embedded context menu which allows hiding or maximizing a child container. At runtime you
can show this context menu with a right click on the empty area in a child container or with a click on the tool-icon.

The following GIF illustrates context menu displayed on right-clicking the child container.

The context menu can be customized using the ContextMenuStrip property of the DashboardOptions class as
illustrated in the following code:

c1DashboardLayout1.Options.ContextMenuStrip = customContextMenuStrip;

C#

 DashBoardLayout for WinForms

13 Copyright © GrapeCity, Inc. All rights reserved.

ドラッグアンドドロップドラッグアンドドロップ

DashboardLayout supports drag drop operation of the child containers. On performing drag drop operation, the
manner in which child containers reposition themselves differ for every layout. In flow layout, when a child container is
dragged, all the remaining child containers reposition themselves in the flow direction set for the layout. On the other
hand, when you drag a child container in the grid layout, the dragged child container replaces its position with
another child container in its cell. And, when you drag a child container in split layout, it shifts to the other panel in
the mouse navigation path and all the other child containers change their positions as well.

You can drag and drop a child container using two methods, using hand tool and tool-icon. The hand tool appears
when you hover the mouse over an empty space in the child container. This tool lets you drag and drop a child
container to another position on the dashboard. The hand tool can not be used when child container is docked into
the control as there is no empty space. As an alternative, you can use the tool-icon to perform the drag drop
operation by holding the cursor on the tool-icon.

The following GIF shows drag and drop operation performed using hand tool:

The following GIF shows drag and drop operation performed using tool-icon:

DashBoardLayout for WinForms

14 Copyright © GrapeCity, Inc. All rights reserved.

ツールアイコンツールアイコン

Tool-icon is a multifunctional tool which appears as an icon either on the surface or in the header of the child
container when it is selected with mouse hover. It appears as three dots positioned vertically.

The tool-icon can be used to drag and drop a child container by hovering the mouse over it and dragging the child
container to another position. On clicking, the tool-icon opens a context menu which by default, displays the options
for maximizing or hiding a child container. You can also double-click the tool-icon to maximize or restore the child
container.

Furthermore, DashboardLayout allows you to set the location of the tool-icon on the child container
using ToolIconAppearance property of the DashboardOptions class. This property accepts one of the following
values from the ToolIconAppearance enumeration:

None
UpperLeft
UpperRight
LowerLeft
LowerRight

By default, the value of ToolIconAppearance property is set to None so the tool-icon is not visible.

The following image shows the tool-icon located at the upperleft corner of the child container:

 DashBoardLayout for WinForms

15 Copyright © GrapeCity, Inc. All rights reserved.

The following code shows an example to set the location of the tool-icon:

c1DashboardLayout1.Options.ToolIconAppearance =
C1.Win.Layout.ToolIconAppearance.UpperLeft;

When the header is set on a child container, the tool-icon appears on the right side of the header. Otherwise, the tool-
icon appears on the surface of the child container. If the tool-icon is not visible, the context menu appears on right
clicking the child container.

For styling the tool-icon, refer Dashboard Styling topic.

C#

サイズ変更サイズ変更

DashboardLayout allows you to resize the child containers at runtime. The resizing behavior of the child containers
differ for different layouts. The behaviors are discussed below:

Resizing in Flow layout
On resizing a specific child container, other child containers rearrange themselves maintaining the flow direction.

DashBoardLayout for WinForms

16 Copyright © GrapeCity, Inc. All rights reserved.

Resizing in Grid layout
On resizing width of a specific child container, it spans the adjacent column and the other child containers
rearrange themselves accordingly in the next column/row. However, on resizing height of a specific child
container, it spans the row below and the other child containers rearrange themselves accordingly in the next
row/column.

 DashBoardLayout for WinForms

17 Copyright © GrapeCity, Inc. All rights reserved.

Resizing in Split layout
On hovering mouse over the SplitterBar, a resizing handle appears over the bar which can be used to resize the
child containers (C1SplitterPanel) at runtime. However, you can specify minimum width or height of each panel
to prevent the user from resizing it too small through the MinWidth and MinHeight properties of
the C1SplitterPanel class. The following code below shows an example of setting the minimum width for the
child containers:

((C1SplitterPanel)
(c1DashboardLayout1.Items["Container1"].ItemContainer)).MinWidth =
200;

C#

DashBoardLayout for WinForms

18 Copyright © GrapeCity, Inc. All rights reserved.

You can also specify the minimum and maximum size for all the child containers at once
using MinimumItemContainerSize and MaximumItemContainerSize properties of the DashboardOptions class as
illustrated in the following code:

c1DashboardLayout1.Options.MinimumItemContainerSize = new
System.Drawing.Size(400,200);
c1DashboardLayout1.Options.MaximumItemContainerSize = new
System.Drawing.Size(600, 400);

C#

ダッシュボードのスタイルダッシュボードのスタイル

DashboardLayout allows you to customize its appearance along with the appearance of the child containers using
Styles property. It returns an object of the class DashboardTheme which provides three different properties
namely Common referring to the CommonStyle class and ItemContainer referring to the ItemContainerStyle
class and ContainerHeader referring to the ContainerHeaderStyle class. These classes handle the styling of the
DashboardLayout control and the child containers and their headers respectively.

The following image shows the styling applied to the DashboardLayout, the child containers and the tool-icon.

 DashBoardLayout for WinForms

19 Copyright © GrapeCity, Inc. All rights reserved.

Container Styling

The appearance of the DashboardLayout control can be customized using the properties exposed by the
CommonStyle class. The following code shows an example to style the DashboardLayout:

DashboardTheme dashboardTheme = c1DashboardLayout1.Styles;
dashboardTheme.Common.Margins = new C1.Framework.Thickness(30,30,30,30);
dashboardTheme.Common.Padding = new C1.Framework.Thickness(20,20,20,20);
dashboardTheme.Common.BackColor = Color.Beige;

Item Container Styling

The appearance of the child containers or item containers can be changed using the properties exposed by the
ItemContainerStyle class. The following code uses the properties of the ItemContainerStyle class to change the
appearance of the child container:

DashboardTheme dashboardTheme = c1DashboardLayout1.Styles;
dashboardTheme.ItemContainer.BackColor = Color.BlanchedAlmond;
dashboardTheme.ItemContainer.Hot.BackColor = Color.White;

C#

C#

DashBoardLayout for WinForms

20 Copyright © GrapeCity, Inc. All rights reserved.

dashboardTheme.ItemContainer.Margins = new
C1.Framework.Thickness(10,10,10,10);
dashboardTheme.ItemContainer.Padding = new
C1.Framework.Thickness(10,10,10,10);

In addition, DashboardLayout allows you to set a custom tool-icon image using ToolIcon property of the
ItemContainerStyle class. The property also allows you to change the color of tool-icon image. The following code
illustrates how ToolIcon property can be used to set a custom tool-icon and change its color:

DashboardTheme dashboardTheme = c1DashboardLayout1.Styles;
dashboardTheme.ItemContainer.ToolIcon =
Image.FromFile(@"C:\ToolIcon.png");
dashboardTheme.ItemContainer.ToolIconColor = Color.BurlyWood;

Note: These properties can be applied to all the child containers so if you want to style a specific child
container, you can use the following code snippet.

((Panel)(c1DashboardLayout1.Items[0].ItemContainer)).BackColor = Color.Purple;

Item Container Header Styling

You can customize the appearance of the child container header using the properties exposed by the
ContainerHeaderStyle class. These properties are applied to the headers of all the child containers. The following
code illustrates the properties used for customizing the appearance of the child container:

DashboardTheme dashboardTheme = c1DashboardLayout1.Styles;
dashboardTheme.ContainerHeader.BackColor = Color.BurlyWood;
dashboardTheme.ContainerHeader.ForeColor = Color.Brown;
dashboardTheme.ContainerHeader.Hot.ForeColor = Color.Cyan;
dashboardTheme.ContainerHeader.Hot.BackColor = Color.Red;

C#

C#

XMLシリアル化シリアル化

Serialization refers to converting an object into a stream of bytes. The purpose of serialization is to save the current
state of an object so that it can be recreated when required. DashboardLayout supports serialization
through SaveLayout and LoadLayout methods of the C1DashboardLayout class. The SaveLayout method saves the
DashboardLayout layout properties, i.e., order and bounds of child containers, to an XML stream or file. The
LoadLayout method loads the DashboardLayout layout properties from an XML stream or file.

The following code shows the example of saving and loading the DashboardLayout to and from an XML file:

c1DashboardLayout1.SaveLayout(“DashboardLayout.xml");
c1DashboardLayout1.LoadLayout(“DashboardLayout.xml");

The following code shows example of saving and loading the DashboardLayout to and from an XML stream:

C#

C#

 DashBoardLayout for WinForms

21 Copyright © GrapeCity, Inc. All rights reserved.

MemoryStream stream = new MemoryStream();
c1DashboardLayout1.SaveLayout(stream);
stream.Seek(0, SeekOrigin.Begin);
c1DashboardLayout1.LoadLayout(stream);

C#

DashBoardLayout for WinForms

22 Copyright © GrapeCity, Inc. All rights reserved.

チュートリアルチュートリアル

The walkthrough topics in this section are created with the assumption that you are familiar with the
DashboardLayout control and know how to use it in general.

Creating Dashboard with Flow Layout
Learn how to create a lead conversion dashboard using flow layout.

Creating Dashboard with Grid Layout
Learn how to create a lead conversion dashboard using grid layout.

Creating Dashboard with Split Layout
Learn how to create a lead conversion dashboard using split layout.

Creating Custom Context Menu
Learn how to create a custom context menu.

フローレイアウトでダッシュボードの作成フローレイアウトでダッシュボードの作成

This topic guides you through the steps to create a lead conversion dashboard using flow layout. It displays the lead
conversion ratio, sales in different countries in a pie chart, and sales details of companies in a FlexgGid.

1. Create a new Windows Form application.
2. In the Windows Forms Designer, set the height of the form to 600 and width to 850.
3. Drag and drop a DashboardLayout control from the Toolbox onto your form.

Observe: By default, a layout of the type Split is attached to it.
4. Select the DashboardLayout control. In the Properties window, set the following properties:

Property Name Value

 DashBoardLayout for WinForms

23 Copyright © GrapeCity, Inc. All rights reserved.

LayoutType Flow

Dock Fill

5. Click inside the DashboardLayout control. The FlowContentPanel (layout control attached to the
DashboardLayout) is selected.

6. Drag and drop a Label control on the DashboardLayout and set the following properties:
Property Name Value

Location 70, 70

Text 13:1

Font size 35

Observe: A child container named Panel1 of the type Panel is automatically created under the Label control and
it positions itself at the upper left corner of the FlowContentPanel since its FlowDirection property is set to
LeftToRight by default.

7. Select Panel1 and set the following properties:
Property Name Value

Width 310

Height 230

Caption on c1DashboardLayout1 Lead Conversion Ratio

Now, drag and drop another Label control on Panel1 and set the following properties:

Property Name Value

Location 75, 140

Text Unqualified Leads turned
into customers

Font size 10

8. Drag and drop a FlexPie on the DashboardLayout control and set the following properties:
Property Name Value

Dock Fill

BindingName CountryName

Binding OpportunityCount

A child container named Panel3 is created under it and the child container containing the FlexPie positions
itself next to Panel1.

9. Select Panel3 and set the following properties:
Property Name Value

Width 400

Height 230

Caption on c1DashboardLayout1 Country Sales

10. Add a class named CountrySales.cs to the project and copy the following code to it to add data for FlexPie.
C#

public class CountrySales

copyCode

DashBoardLayout for WinForms

24 Copyright © GrapeCity, Inc. All rights reserved.

{
 public CountrySales(string countryName, int opportunityCount)
 {
 CountryName = countryName;
 OpportunityCount = opportunityCount;
 }
 public CountrySales() { }
 public string CountryName { get; set; }
 public int OpportunityCount { get; set; }
 public List<CountrySales> GetData()
 {
 string[] countryNames = {"Germany", "India", "Japan", "UK" , "US" };
 List<CountrySales> countrySalesList = new List<CountrySales>();
 Random random = new Random();
 for (int i = 0; i < 5; i++)
 countrySalesList.Add(new
CountrySales(countryNames[i],random.Next(0,30)));
 return countrySalesList;
 }
}

11. Add the following code to Form1’s Load event to populate the pie with data.
C#

CountrySales countrySales = new CountrySales();
List<CountrySales> countrySalesList = countrySales.GetData();
flexPie1.DataSource = countrySalesList;

12. Drag and drop a FlexGrid control on the DashboardLayout and set its Dock property to Fill.
A child container named Panel5 is created under it. You can see that since the width of the C1DashboardLayout
has got exhausted and the WrapContents property of the FlowContentPanel is set to true hence the child
container containing the FlexGrid is wrapped to the next row, else it would have been clipped.

13. Select Panel5 and set the following properties:
Property Name Value

Width 510

Height 260

Caption on c1DashboardLayout1 Sales Details

14. Add a class named SalesDetails.cs to the project and copy the following code to it to add data for FlexGrid.
C#

public class SalesDetails
{

 public SalesDetails(string companyName, double salesValue, double
weighted,string salesStage)
 {
 CompanyName = companyName;
 SalesValue = salesValue;
 Weighted = weighted;
 SalesStage = salesStage;
 }
 public SalesDetails() { }
 public string CompanyName { get; set; }

copyCode

copyCode

 DashBoardLayout for WinForms

25 Copyright © GrapeCity, Inc. All rights reserved.

 public double SalesValue { get; set; }
 public double Weighted { get; set; }
 public string SalesStage { get; set; }

 public List<SalesDetails> GetData()
 {
 string[] companyNames = { "Agilent Technologies", "Belo Co.", "Calpine
Co.", "Crompton Corp.", "Exelon Inc.", "Delphi Corp.", "Ferro Co.","Gateway
Inc.","Harris Corp."};
 string[] salesStages={"Qualified", "Lead", "Qualified", "Proposal",
"Negotiation", "Won", "Lost","Lead","Proposal"};
 List<SalesDetails> salesDetailsList = new List<SalesDetails>();
 Random random = new Random();
 for(int i=0;i<9;i++)
 {
 salesDetailsList.Add(new
SalesDetails(companyNames[i],random.Next(0,10000),
random.Next(1,10000),salesStages[i]));
 }
 return salesDetailsList;
 }
}

15. Add the following code to Form1’s Load event to populate the grid with data.
C#

SalesDetails salesDetails = new SalesDetails();
List<SalesDetails> salesDetailsList = salesDetails.GetData();
c1FlexGrid1.DataSource = salesDetailsList;

The lead conversion dashboard gets created.

copyCode

グリッドレイアウトでダッシュボードの作成グリッドレイアウトでダッシュボードの作成

This topic guides you through the steps to create a lead conversion dashboard using grid layout. It displays the lead
conversion ratio, sales in different countries in a pie chart, and sales details of companies in a FlexgGid.

DashBoardLayout for WinForms

26 Copyright © GrapeCity, Inc. All rights reserved.

1. Create a new Windows Form application.
2. Drag and drop a DashboardLayout control from the Toolbox onto your form.

Observe: By default, a layout of the type Split is attached to it.
3. Select the DashboardLayout control. In the Properties window, set the following properties:

Property Name Value

LayoutType Grid

Dock Fill

On changing the LayoutType to Grid, the DashboardLayout control has six cells by default.

4. Drag and drop a Label control in the first cell and set the following properties:
Property Name Value

Text 13:1

Font size 35

Observe: A child container named Panel1 of the type Panel is automatically created under the Label control.
5. Select Panel1 and set the following properties:

Property Name Value

Dock Fill

Caption on c1DashboardLayout1 Lead Conversion Ratio

Now, drag and drop another Label control on Panel1 and set the following properties:

 DashBoardLayout for WinForms

27 Copyright © GrapeCity, Inc. All rights reserved.

Property Name Value

Text Unqualified Leads turned
into customers

Font size 10

6. Drag and drop a FlexPie in the third cell and set the following properties:
Property Name Value

Dock Fill

BindingName CountryName

Binding OpportunityCount

A child container named Panel3 is created under it.
7. Select Panel3 and set the following properties:

Property Name Value

Dock Fill

Caption on c1DashboardLayout1 Country Sales

8. Add a class named CountrySales.cs to the project and copy the following code to it to add data for FlexPie.
C#

public class CountrySales
{
 public CountrySales(string countryName, int opportunityCount)
 {
 CountryName = countryName;
 OpportunityCount = opportunityCount;
 }
 public CountrySales() { }
 public string CountryName { get; set; }
 public int OpportunityCount { get; set; }
 public List<CountrySales> GetData()
 {
 string[] countryNames = {"Germany", "India", "Japan", "UK" , "US" };
 List<CountrySales> countrySalesList = new List<CountrySales>();
 Random random = new Random();
 for (int i = 0; i < 5; i++)
 countrySalesList.Add(new
CountrySales(countryNames[i],random.Next(0,30)));
 return countrySalesList;
 }
}

9. Add the following code to Form1’s Load event to populate the pie with data.
C#

CountrySales countrySales = new CountrySales();
List<CountrySales> countrySalesList = countrySales.GetData();
flexPie1.DataSource = countrySalesList;

10. Drag and drop a FlexGrid control in the fifth cell.
A child container named Panel5 gets created under it.

11. Select Panel5 and set the following properties:

copyCode

copyCode

DashBoardLayout for WinForms

28 Copyright © GrapeCity, Inc. All rights reserved.

Property Name Value

Dock Fill

Caption on c1DashboardLayout1 Sales Details

12. Add a class named SalesDetails.cs to the project and copy the following code to it to add data for FlexGrid.
C#

public class SalesDetails
{

 public SalesDetails(string companyName, double salesValue, double
weighted,string salesStage)
 {
 CompanyName = companyName;
 SalesValue = salesValue;
 Weighted = weighted;
 SalesStage = salesStage;
 }
 public SalesDetails() { }
 public string CompanyName { get; set; }
 public double SalesValue { get; set; }
 public double Weighted { get; set; }
 public string SalesStage { get; set; }

 public List<SalesDetails> GetData()
 {
 string[] companyNames = { "Agilent Technologies", "Belo Co.", "Calpine
Co.", "Crompton Corp.", "Exelon Inc.", "Delphi Corp.", "Ferro Co.","Gateway
Inc.","Harris Corp."};
 string[] salesStages={"Qualified", "Lead", "Qualified", "Proposal",
"Negotiation", "Won", "Lost","Lead","Proposal"};
 List<SalesDetails> salesDetailsList = new List<SalesDetails>();
 Random random = new Random();
 for(int i=0;i<9;i++)
 {
 salesDetailsList.Add(new
SalesDetails(companyNames[i],random.Next(0,10000),
random.Next(1,10000),salesStages[i]));
 }
 return salesDetailsList;
 }
}

13. Add the following code to Form1’s Load event to populate the grid with data.
C#

SalesDetails salesDetails = new SalesDetails();
List<SalesDetails> salesDetailsList = salesDetails.GetData();
c1FlexGrid1.DataSource = salesDetailsList;

The lead conversion dashboard gets created.

copyCode

copyCode

 DashBoardLayout for WinForms

29 Copyright © GrapeCity, Inc. All rights reserved.

分割レイアウトでダッシュボードの作成分割レイアウトでダッシュボードの作成

This topic guides you through the steps to create a lead conversion dashboard using split layout. It displays the lead
conversion ratio, sales in different countries in a pie chart, and sales details of companies in a FlexGrid.

1. Create a new Windows Form application.
2. Drag and drop a DashboardLayout control from the Toolbox onto your form.

Observe: By default, a layout of the type Split is attached to it.
3. Select the DashboardLayout control. In the Properties window, set it's Dock property to Fill.
4. Click inside the DashboardLayout control. The SplitContentPanel (layout control attached to the

DashboardLayout by default) is selected.

Note that when the DashboardLayout’s LayoutType property is set to Split, child containers are not
created automatically on dragging or dropping controls on the DashboardLayout as in other two layout
types (Grid and Flow). Child containers have to be added manually to the DashboardLayout control.

5. Click on the SplitContentPanel’s smart tag to open its Tasks Menu. Select Add Panel from the
DashboardSplitContainer Tasks menu.
A child container of the type C1SplitterPanel is added to the DashboardLayout control.

6. Now add two more panels using the Add Panel option from the DashboardSplitContainer Tasks menu.
Observe: All the three panels namely C1SplitterPanel1, C1SplitterPanel2 and C1Splitterpanel3 are aligned one
below the other horizontally.

7. Select C1SplitterPanel2 and set its Dock property to Left.
8. Drag and drop a FlexGrid control on C1SplitterPanel1. Set C1SplitterPanel1’s Text property to Sales Details.

This sets the text for C1SplitterPanel header.
9. Add a class named SalesDetails.cs to the project and copy the following code to it to add data for FlexGrid.

C#

public class SalesDetails

copyCode

DashBoardLayout for WinForms

30 Copyright © GrapeCity, Inc. All rights reserved.

{

 public SalesDetails(string companyName, double salesValue, double
weighted,string salesStage)
 {
 CompanyName = companyName;
 SalesValue = salesValue;
 Weighted = weighted;
 SalesStage = salesStage;
 }
 public SalesDetails() { }
 public string CompanyName { get; set; }
 public double SalesValue { get; set; }
 public double Weighted { get; set; }
 public string SalesStage { get; set; }

 public List<SalesDetails> GetData()
 {
 string[] companyNames = { "Agilent Technologies", "Belo Co.", "Calpine
Co.", "Crompton Corp.", "Exelon Inc.", "Delphi Corp.", "Ferro Co.","Gateway
Inc.","Harris Corp."};
 string[] salesStages={"Qualified", "Lead", "Qualified", "Proposal",
"Negotiation", "Won", "Lost","Lead","Proposal"};
 List<SalesDetails> salesDetailsList = new List<SalesDetails>();
 Random random = new Random();
 for(int i=0;i<9;i++)
 {
 salesDetailsList.Add(new
SalesDetails(companyNames[i],random.Next(0,10000),
random.Next(1,10000),salesStages[i]));
 }
 return salesDetailsList;
 }
}

10. Add the following code to Form1’s Load event to populate the grid with data.
C#

SalesDetails salesDetails = new SalesDetails();
List<SalesDetails> salesDetailsList = salesDetails.GetData();
c1FlexGrid1.DataSource = salesDetailsList;

11. Drag and drop a Label control on C1SplitterPanel2 and set the following properties:
Property Name Value

Text 13:1

Font size 35

Now, drag and drop another Label control on C1SplitterPanel2 and set the following properties:

Property Name Value

Text Unqualified Leads turned
into customers

copyCode

 DashBoardLayout for WinForms

31 Copyright © GrapeCity, Inc. All rights reserved.

Font size 10

12. Add a FlexPie to C1SplitterPanel3 and set the following properties:
Property Name Value

Dock Fill

BindingName CountryName

Binding OpportunityCount

13. Set C1SplitterPanel3’s Text property to “Country Sales”
14. Add a class named CountrySales.cs to the project and copy the following code to it to add data for FlexPie.

C#

public class CountrySales
{
 public CountrySales(string countryName, int opportunityCount)
 {
 CountryName = countryName;
 OpportunityCount = opportunityCount;
 }
 public CountrySales() { }
 public string CountryName { get; set; }
 public int OpportunityCount { get; set; }
 public List<CountrySales> GetData()
 {
 string[] countryNames = {"Germany", "India", "Japan", "UK" , "US" };
 List<CountrySales> countrySalesList = new List<CountrySales>();
 Random random = new Random();
 for (int i = 0; i < 5; i++)
 countrySalesList.Add(new
CountrySales(countryNames[i],random.Next(0,30)));
 return countrySalesList;
 }
}

15. Add the following code to Form1’s Load event to populate the pie with data.
C#

CountrySales countrySales = new CountrySales();
List<CountrySales> countrySalesList = countrySales.GetData();
flexPie1.DataSource = countrySalesList;

The lead conversion dashboard gets created.

copyCode

copyCode

カスタムコンテキストメニューの作成カスタムコンテキストメニューの作成

This topic guides you through the steps to create custom context menu that provides you the options to change caption of the item container,
export control, change image, and remove the item container from the DashboardCollection.

DashBoardLayout for WinForms

32 Copyright © GrapeCity, Inc. All rights reserved.

1. Create a new Windows Forms App.
2. Drag and drop a DashboardLayout control from the Toolbox onto your form.

Observe: By default, a layout of the type Split is attached to it.
3. Select the DashboardLayout control. In the Properties window, set the following properties:

Property Name Value

LayoutType Flow

Dock Fill

4. Click inside the DashboardLayout control. The FlowContentPanel (layout control attached to the DashboardLayout) is selected.
5. Drag and drop the FlexGrid control on the DashboardLayout and set the following properties:

Property Name Value

Caption on c1DashboardLayout Sales

DataSource tenMostExpensiveProductsBindingSource

To create the data source and bind it to the control, follow the steps provided in the Quick Start.
6. Drag and drop the FlexChart control on the DashboardLayout and set the following properties:

Property Name Value

Dock Fill

DataSource tenMostExpensiveProductsBindingSource

BindingX TenMostExpensiveProducts

Binding UnitPrice

Caption on c1DashboardLayout Ten Most Expensive Products

7. Drag and drop a PictureBox control. In the Properties window, navigate to the Image property and click the ellipsis button to open the
Select Resource dialog.
In the Select Resource window, click Import button to import an image from your system and click OK. Now, set the following
properties of pictureBox1:
Property Name Value

SizeMode StrechImage

Size 374, 225

Caption on c1DashboardLayout Logo

8. Drag and drop the ContextMenuStrip control, set it's Name property to customContextMenu. Now, add the following menu items to

 DashBoardLayout for WinForms

33 Copyright © GrapeCity, Inc. All rights reserved.

the ContextMenuStrip:
Change Caption
Export
Change Image
Remove

Observe: The ContextMenuStrip control gets added to the Component tray.
Click the ContextMenuStrip smart tag and select Edit Items. The Items Collection Editor opens.
Observe the following members corresponding to the menu items you added are automatically added to the list:

changeCaptionToolStripMenuItem
exportToolStripMenuItem
changeImageToolStripMenuItem
removeToolStripMenuItem

9. Switch to the code view and add the following code:
C#

private void CustomContextMenu_Opening(object sender, System.ComponentModel.CancelEventArgs e)
{
 //Change Image and Export options need to be shown selectively so they are disabled initially.
 changeImageToolStripMenuItem.Enabled = false;
 exportToolStripMenuItem.Enabled = false;

 //Depending on the type of control contained within the child container
 //the Export and Change Image
 //options are enabled
 foreach (Control control in c1DashboardLayout1.GetSelectedItem().Items)
 {
 //If the selected child container contains a Flexgrid or FlexChart
 //the export option is enabled.
 if (control is C1FlexGrid || control is FlexChart)
 {
 exportToolStripMenuItem.Enabled = true;
 }

 //If the selected child container contains a PictureBox control
 //the change image option is enabled.
 if (control is PictureBox)
 {
 changeImageToolStripMenuItem.Enabled = true;
 }
 }
}

private void ToolStripMenuItem_Click(object sender, EventArgs e)
{
 ToolStripMenuItem item = (ToolStripMenuItem)sender;
 switch (item.Name)
 {
 case "changeCaptionToolStripMenuItem":

 //Creates a new form which takes new Caption of the item container as input from the user.
 CaptionChangeForm captionChangeForm = new CaptionChangeForm(
 c1DashboardLayout1.GetSelectedItem().Caption);
 if (captionChangeForm.ShowDialog() == DialogResult.OK)
 c1DashboardLayout1.SetCaption(c1DashboardLayout1.GetSelectedItem().ItemContainer,
 captionChangeForm.NewCaption);
 captionChangeForm.Dispose();
 break;

 case "exportToolStripMenuItem":
 //Exports the FlexGrid to an Excel file and FlexChart to an image
 //if the selected item container contains a FlexGrid or FlexChart
 foreach (Control control in c1DashboardLayout1.GetSelectedItem().Items)

copyCode

DashBoardLayout for WinForms

34 Copyright © GrapeCity, Inc. All rights reserved.

 {
 if (control is C1FlexGrid)
 {
 var dialog = new SaveFileDialog()
 {
 Filter = "Excel Files|*.xls;*xlsx;*xlsm"
 };

 if (dialog.ShowDialog() == DialogResult.OK)
 {
 ((C1FlexGrid)control).SaveExcel(dialog.FileName, FileFlags.AsDisplayed);
 }
 }
 else if (control is FlexChart)
 {
 var dialog = new SaveFileDialog()
 {
 Filter = "PNG|*.png|JPEG |*.jpeg|SVG|*.svg"
 };
 if (dialog.ShowDialog() == DialogResult.OK)
 {
 using (Stream stream = dialog.OpenFile())
 {
 var extension = dialog.FileName.Split('.')[1];
 ImageFormat fmt = (ImageFormat)Enum.Parse(typeof(ImageFormat), extension,
true);
 ((FlexChart)control).SaveImage(stream, fmt, 500, 800);
 }
 }

 }
 }
 break;
 case "changeImageToolStripMenuItem":

 //Allows users to browse and change image file which is shown in the PictureBox
 //if the selected item container contains a PictureBox control
 foreach (Control control in c1DashboardLayout1.GetSelectedItem().Items)
 {
 if (control is PictureBox)
 {
 var imageDialog = new OpenFileDialog()
 {
 Filter = "PNG|*.png|JPEG |*.jpeg|SVG|*.svg",
 Title = "Browse Image files"
 };
 if (imageDialog.ShowDialog() == DialogResult.OK)
 ((PictureBox)control).Image = Image.FromFile(imageDialog.FileName);
 }
 }
 break;
 case "removeToolStripMenuItem":

 //Removes the selected item container from the DashboardCollection
 c1DashboardLayout1.Items.Remove(c1DashboardLayout1.GetSelectedItem().Id);
 break;
 }
}
private void Form1_Load(object sender, EventArgs e)
{
 // TODO: This line of code loads data into the 'c1NWindDataSet.Ten_Most_Expensive_Products'
 //table. You can move, or remove it, as needed.

this.ten_Most_Expensive_ProductsTableAdapter.Fill(this.c1NWindDataSet.Ten_Most_Expensive_Products);

 DashBoardLayout for WinForms

35 Copyright © GrapeCity, Inc. All rights reserved.

 c1DashboardLayout1.Options.ContextMenuStrip = customContextMenu;
 customContextMenu.Opening += CustomContextMenu_Opening;

 for (int i = 0; i < customContextMenu.Items.Count; i++)
 {
 customContextMenu.Items[i].Click += ToolStripMenuItem_Click;
 }
}

10. Add a new Form to the project and name it CaptionChangeForm. Add the following controls to the form and set their properties:
Control Property Value

Label Text Caption

TextBox Name captionTextBox

Button Name saveButton

Button Text Save

11. Switch to the code view and add the following code:
C#

public partial class CaptionChangeForm : Form
{
 //NewCaption is a public property which is accessed in Form1
 //to change the child container's Caption
 public string NewCaption { get; set; }
 public CaptionChangeForm(string oldCaption)
 {
 InitializeComponent();
 captionTextBox.Text = oldCaption;
 }

 private void saveButton_Click(object sender, EventArgs e)
 {
 //Sets the value of NewCaption property and closes the form
 if (captionTextBox.Text != String.Empty)
 {
 NewCaption = captionTextBox.Text;
 this.DialogResult = DialogResult.OK;
 }
 this.Close();
 }
}

A dashboard gets created wherein you can use the custom context menu.

copyCode

DashBoardLayout for WinForms

36 Copyright © GrapeCity, Inc. All rights reserved.

	目次
	DashboardLayout for WinForms
	主な特長
	要素
	クイックスタート
	DashboardLayoutの操作
	 レイアウト
	フロー レイアウト
	グリッド レイアウト
	分割レイアウト

	子コンテナのヘッダー
	子コンテナのコンテキストメニュー

	チュートリアル
	フローレイアウトでダッシュボードの作成
	グリッドレイアウトでダッシュボードの作成
	分割レイアウトでダッシュボードの作成
	カスタムコンテキストメニューの作成

